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Abstract

We have recently proposed a nonlocal continuum crystal plasticity theory for single slip, which is based on a statis-
tical-mechanics description of the collective behavior of dislocations in two dimensions. In the present paper we address
the extension of the theory from single slip to multiple slip. Continuum dislocation dynamics in multiple slip is defined
and coupled to the small-strain framework of conventional continuum crystal plasticity. Dislocation nucleation, the
material resistance to dislocation glide and dislocation annihilation are included in the formulation. Various nonlocal
interaction laws between different slip systems are considered on phenomenological grounds. To validate the theory we
compare with the results of dislocation simulations of two boundary value problems. One problem is simple shearing of
a crystalline strip constrained between two rigid and impenetrable walls. Key features are the formation of boundary
layers and the size dependence of the response in the case of symmetric double slip. The other problem is bending of a
single crystal strip under double slip. The bending moment versus rotation angle and the evolution of the dislocation
structure are analyzed for different slip orientations and specimen sizes.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There is a growing body of experimental evidence that anisotropic plastic flow in crystalline solids is
inherently size dependent at length scales of the order of tens of micrometers and smaller. Size effects of
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the type ‘‘smaller is stronger’’ are common at these scales and have been observed, for example, by Fleck
et al. (1994) in torsion, and by Ma and Clarke (1995) and by Stölken and Evans (1998) in composites and in
bending, respectively.

Standard continuum crystal plasticity models are local and do not make reference to the microstructural
characteristic lengths that are significant at these scales. As a consequence, such models exhibit no size
dependence. This creates a motivation to develop more sophisticated (nonlocal) models that incorporate
such a length scale and, therefore, should be able to capture size effects (Hutchinson, 2000). However, there
is no unified structure of such nonlocal theories. Therefore, there are a number of nonlocal (or strain-
gradient) crystal plasticity theories available in the literature which introduce nonlocality in different ways.
A subset of them is based on the idea that the geometrically necessary dislocations associated with strain
gradients give rise to additional hardening. Most of these employ Nye�s (1953) geometrical concept of a
dislocation density tensor, but in a variety of ways. Irrespective of the precise formulation, a constant mate-
rial length scale enters in such theories which needs to be fitted to experimental results (see, e.g., Fleck et al.
(1994), Fleck and Hutchinson (1997) and Gao et al. (1999)) or to results of discrete dislocation simulations,
e.g. Bassani et al. (2001); Shu et al. (2001); Bittencourt et al. (2003).

While the above-referenced approaches are completely phenomenological, this paper is concerned with
an alternative approach: a recently proposed nonlocal crystal plasticity theory (Yefimov et al., 2004a) that
augments a standard crystal plasticity description with a statistical-mechanics description of the collective
behavior of dislocations in two dimensions (Groma, 1997). Initially, the theory was proposed in single slip
(Yefimov et al., 2004a). Starting out from a statistical-mechanics treatment of an ensemble of gliding dis-
locations, the resulting dislocation dynamics is governed by two coupled balance equations for the total
dislocation density and net-Burgers vector density. The latter can be interpreted as the density of geomet-
rically necessary dislocations (GNDs).

To assess the validity of the approach, it has been applied to two boundary value problems. First we
have analyzed shearing of a model composite material having elastic reinforcing particles (Yefimov
et al., 2004a), while the other problem concerned bending of a single-crystal strip (Yefimov et al.,
2004b). The nonlocal plasticity results were compared with those of discrete dislocation simulations of
the same problems. The comparisons for the two problems have revealed the ability of the theory in single
slip to capture the nonlocal effects and to treat the boundary value problems with physically different of
boundary conditions.

The goal of the present study is to extend the theory from single slip to multiple slip. The key in multiple
slip is the interaction between dislocations on different slip systems. By lack of a better procedure, several
phenomenological interaction rules are proposed. They are evaluated first by analyzing the simple shearing
of a crystal with two slip systems between two rigid and impenetrable walls. The results are compared with
those of a discrete dislocation study by Shu et al. (2001) of the same problem, with emphasis on the for-
mation of boundary layers and the associated size effects. One of the interaction laws is adopted subse-
quently in the study of bending of a single-crystal strip. We will show how the theory can handle this
problem in symmetric double slip and will also discuss the correspondence with results of discrete disloca-
tion simulations (Cleveringa et al., 1999).
2. Nonlocal continuum plasticity

The nonlocal continuum crystal plasticity formulation adopted here is based on the single-slip theory
proposed by Yefimov et al. (2004a). The theory involves a statistical-mechanics description of the collective
behavior of dislocations in two dimensions, which is coupled to standard single crystal continuum slip
description. In this section we first give a brief summary of the theory for single slip and then proceed with
an extension to multiple slip.
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2.1. Summary of the theory for single slip

Starting out from the equation of motion of individual edge dislocations with Burgers vector b and
applying a statistical averaging procedure, Groma (1997) has derived a continuum dynamics for dislocation
densities in two dimensions. It involves the following set of coupled transport equations for the total dis-
location density field q = q+ + q� and for the net-Burgers vector density field k = q+ � q�:
oq
ot

þ o

or
� ðkvÞ ¼ f ðq; k; . . .Þ; ð1Þ

ok
ot

þ o

or
� ðqvÞ ¼ 0; ð2Þ
where q± are the densities of the dislocations with Burgers vector ±b. v is the continuum dislocation glide
velocity, defined as
v ¼ B�1bðs � ssÞ; ð3Þ
with s = m Æ r Æ s being the resolved shear stress on the slip system defined by the unit vectors s = b/jbjof the
slip direction and the slip plane normal m; r is the stress tensor. The back stress ss in (3) arises from the
gradient of the net-Burgers vector density along the slip direction as
ssðrÞ ¼
lb

2pð1� mÞqðrÞ � D
ok
or

: ð4Þ
Here, l and m are shear modulus and Poisson�s ratio, respectively, and B is the dislocation drag coefficient.
D is a dimensionless constant. It is noted that Gurtin�s (2002) theory also involves a back stress that is deter-
mined by the gradient of net-Burgers vector, but it involves a material length scale as a new material con-
stant; here the length scale is set by the local dislocation density, which evolves with deformation.

The function f in the right-hand side of (1) governs the rate of production of dislocations and is taken to
have the form
f ðq; k; . . .Þ ¼ Cqnuc j s � ss j �ALeðq þ kÞðq � kÞ j v j : ð5Þ

The first term in the right-hand side represents nucleation from sources with a density qnuc and at a rate
governed by the parameter C given by
C ¼ 1

snuctnuc
if j s � ss jP snuc; C ¼ 0 otherwise; ð6Þ
in terms of the nucleation strength snuc and the nucleation time tnuc. The second term in the right-hand side
of (5) describes the annihilation of dislocations at a rate determined by Ajvj, with A being a dimensionless
constant and Le a material-dependent annihilation distance. Details can be found in Yefimov et al. (2004a).

The above continuum dislocation kinetics is coupled to the small-strain framework of single crystal con-
tinuum plasticity (see, e.g., Asaro, 1983). In summary, the plastic part _ep of the strain rate,
_e ¼ _ee þ _ep; ð7Þ

is expressed in terms of the slip rate _c on the slip system as
_ep ¼ 1

2
_cðs�mþm� sÞ; ð8Þ
and with _c linked to the average continuum dislocation glide velocity as _c ¼ qb � v. Elasticity is specified
by Hooke�s law in the conventional form
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_ee ¼ L�1 _r; ð9Þ

with L the tensor of elastic moduli.

In Yefimov et al. (2004a) we have also introduced the additional (and completely phenomenological) no-
tion that the response of the material be elastic, i.e. _c ¼ 0, when
j s � ss j< sres; ð10Þ
where sres is the slip resistance.

2.2. Extension to multiple slip

Let us consider a planar single crystal having N P 1 active slip systems, identified by Greek superscripts
(no summation convention). Each slip system a (a = 1, . . . ,N) is defined by a pair of the unit vectors
(s(a),m(a)) in the direction of slip and the slip plane normal, respectively, and s(a) = b(a)/jb(a)j.

To define a continuum dislocation dynamics in multiple slip, we apply the single slip dynamics, Eqs. (1)
and (2), for each slip system individually as follows:
oqðaÞ

ot
þ o

or
� ðkðaÞvðaÞÞ ¼ f ðaÞ; ð11Þ

okðaÞ

ot
þ o

or
� ðqðaÞvðaÞÞ ¼ 0: ð12Þ
The velocity v(a) is defined as
vðaÞ ¼ B�1bðaÞðsðaÞ � sðaÞtotÞ ð13Þ

in terms of the resolved shear stress s(a) = m(a) Æ r Æ s(a) and the total back stress sðaÞtot on the slip system a. The
actual form of sðaÞtot will be discussed later.

The production term f(a) in Eq. (11) is defined similar to that in (5) in single slip with ss being substituted
by stot

(a), i.e.
f ðaÞ ¼ CðaÞqðaÞ
nuc j sðaÞ � sðaÞtot j �ALeðqðaÞ þ kðaÞÞðqðaÞ � kðaÞÞ j vðaÞ j : ð14Þ
The nucleation parameter C(a) is therefore defined by
CðaÞ ¼ 1

snuctnuc
if j sðaÞ � sðaÞtot jP snuc; CðaÞ ¼ 0 otherwise: ð15Þ
The elastic–plastic threshold is also defined per slip system and now expressed as
_cðaÞ ¼ 0 if j sðaÞ � sðaÞtot j< sres: ð16Þ

The slip rate _cðaÞ is linked to the average continuum dislocation glide velocity v(a) from Eq. (13) according to
_cðaÞ ¼ qðaÞbðaÞ � vðaÞ.

Zaiser et al. (2001) have proposed a proper statistical treatment of two-dimensional dislocation dynamics
in multiple slip, as a generalization of Groma�s (1997) single slip approach adopted here. That generalized
model includes a full range of dislocation–dislocation interactions and requires higher-order dislocation den-
sities to describe the higher-order pair correlations of the dislocations in case of multiple slip. Due to the
natural complexity of such an approach and its current status, it is difficult to derive explicit expressions
for the nonlocal interactions between different slip systems based only on single dislocation densities avail-
able in this study. Therefore, to define the nonlocal interactions between the dislocations of different slip sys-
tems expressed here by the total back stress, we will adopt here a purely phenomenological approach.
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We assume the total back stress is defined as a superposition of the single slip measures of back stress of
all available slip systems with orientation dependent weight factors. Thus, we can define sðaÞtot as
sðaÞtot ¼
XN
b¼1

SðabÞsðbÞs ; ð17Þ
with S(ab) being interpreted as a projection matrix and sðaÞs is the back stress from single slip approximation,
cf. Eq. (4),
sðaÞs ¼ lbðaÞ

2pð1� mÞqðaÞ � D
okðaÞ

or
: ð18Þ
On the other hand, sðaÞtot can be also interpreted as a resolved shear component of the total back stress tensor
rtot (Harder, 1999; Zaiser et al., 2001),
sðaÞtot ¼ mðaÞ � rtot � sðaÞ: ð19Þ

Here, we distinguish between two possibilities of constructing the total back stress tensor. Substitution into
(19) and taking into account (17) yields the associated form for the projection matrix S (ab):

Version 1:
rtot ¼
X

a

sðaÞs ½mðaÞ � sðaÞ
; ð20Þ

SðabÞ ¼ mðaÞ � ðmðbÞ � sðbÞÞ � sðaÞ ¼ ðmðaÞ �mðbÞÞðsðaÞ � sðbÞÞ; ð21Þ

Version 2:
rtot ¼
X

a

sðaÞs ½sðaÞ �mðaÞ þmðaÞ � sðaÞ
; ð22Þ

SðabÞ ¼ mðaÞ � ðsðbÞ �mðbÞ þmðbÞ � sðbÞÞ � sðaÞ: ð23Þ

The second of these is the symmetric version of the first. In addition, we consider a simple interaction

rule that involves only the slip directions:

Version 3:
SðabÞ ¼ sðaÞ � sðbÞ; ð24Þ
which is similar to that used by Gurtin (2002) in his strain-gradient single crystal plasticity theory.
In all three proposed versions, S(ab) = S(ba) and the diagonal components of S(ab) are equal to unity, so

that the back stress produced by a slip system a has the largest effect on that slip system itself and a smaller
effect on the other slip systems.

As the total back stress sðaÞtot is specified, the continuum dislocation dynamics in multiple slip, Eqs. (11)–
(17), can be coupled to the same framework of single crystal continuum plasticity as follows. The plastic slip
rate _ep is related to the slip rates _cðaÞ via
_ep ¼
XN
a¼1

_cðaÞPðaÞ; ð25Þ
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where P(a) is the Schmid orientation tensor given by
PðaÞ ¼ 1

2
ðsðaÞ �mðaÞ þmðaÞ � sðaÞÞ: ð26Þ
The elastic strain rate remains being governed by Hooke�s law, Eq. (9).
3. Sensitivity of nonlocal interaction laws for constrained simple shear

3.1. Problem formulation

The three interaction laws proposed above are benchmarked by considering the simple shearing of a
crystalline strip constrained between two rigid and impenetrable walls, as illustrated in Fig. 1. This problem
was analyzed originally by Shu et al. (2001) and compared to a strain gradient theory of Shu and Fleck
(1999), while subsequently it has been used for comparison with Gurtin�s (2002) theory by Bittencourt
et al. (2003). The crystal is assumed to have two slip systems. The strip is taken to be infinitely long but
periodic, so that only a region of width w needs to be analyzed with periodic boundary conditions at
x1 = 0 and x1 = w. The boundary conditions at the top and bottom of the strip are
u1 ¼ 0; u2 ¼ 0 along x2 ¼ 0;

u1 ¼ UðtÞ ¼ H _Ct; u2 ¼ 0 along x2 ¼ H ;
ð27Þ
where _C is the prescribed shear rate, taken to be constant in time t. In case of a classical local plasticity
theory, the solution to this simple shearing boundary value problem for a homogeneous material and
for uniform initial conditions is such that the only nonvanishing strain component, e12, is spatially uniform.

This changes drastically however in discrete dislocation plasticity when it is assumed that the disloca-
tions cannot penetrate the top and bottom boundaries. This analysis is carried out using the Van der
Giessen and Needleman (1995) approach, which is discussed in detail in Shu et al. (2001). Within that
framework, the dislocations are treated as line defects in a linear elastic continuum. The computation of
the deformation history is carried out in an incremental manner. Each time step involves three main steps:
(i) determining the forces on the dislocations, i.e. the Peach–Koehler force; (ii) determining the rate of
change of the dislocation structure, which involves the motion of dislocations, the generation of new
dislocations, their mutual annihilation, and their possible pinning at obstacles; and (iii) determining the
Fig. 1. Simple shear of a crystal with two slip systems between two impenetrable walls.
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stress and strain state for the updated dislocation arrangement. The latter is obtained by superposition of
the long-range singular fields for individual dislocations in infinite space and the image field that is calcu-
lated with the finite element method.

The numerical results for a strip with H = 1lm (and cell width w = 1lm) subjected to a constant shear
rate _C ¼ 103 s�1 will serve as a reference for subsequent parameter studies. Two slip systems are considered,
with the slip planes oriented at u(1) = 60� and u(2) = 120� from the x1 axis. We will also analyze the effect of
strip size by varying the height H of the strip and keeping the width w unchanged. In all cases, the material
parameters of the crystal being used in the nonlocal continuum calculations are identical, whenever possi-
ble, to those of the discrete dislocation calculations of Shu et al. (2001), both for elastic and dislocation
properties. The material is taken to be elastically isotropic, with shear modulus l = 26.3GPa and Poisson
ratio m = 0.33. The magnitude of the Burgers vector is b = 0.25nm for all (edge) dislocations and a value
B = 10�4Pas for the drag coefficient is taken. These values are representative for aluminum.

In the analysis no dislocations are present initially and obstacles are not taken into account. In the dis-
crete dislocation simulations new dislocations are generated in pairs from Frank–Read sources distributed
in the material at a density qnuc = 138lm�2 for each slip system, when the resolved shear strength exceeds
the source strength snuc during a sufficiently long time tnuc = 10�8 s. The glide velocity v(I) of dislocation I is
linearly related to the Peach–Koehler force through the drag relation F(I) = Bv(I). Opposite-signed disloca-
tions annihilate when they approach each other to within a distance of Le = 6b.

Beside the material constants, the continuum theory has a few free parameters: the coefficient D in the
back stress (4); the slip resistance sres, cf. Eq. (10); and the annihilation coefficient A in (5). Their values do
not follow from the derivation of the transport equations and were fitted by Yefimov et al. (2004a) to dis-
crete dislocation simulations for the problem of shearing of a two-dimensional composite material. The
same values —A = 5, D = 1 and sres = 15 MPa— are employed in this study. Hence, no further fitting is
being done later in the paper.

Irrespective of the strip height, a uniform finite elementmesh consisting of 30 · 30 quadrilateral elements is
used to discretize the domain for bothmechanical anddislocationdynamics subproblems. In the nonlocal con-
tinuum calculations the sources are distributed uniformly over all integration points in the matrix with a uni-
form density qnuc per slip system. The strength of the dislocation sources is chosen randomly from aGaussian
distribution with mean value �snuc ¼ 1:9� 10�3 l and standard deviation Dsnuc ¼ 0:2�snuc for both approaches.

Discretization of the nonlocal crystal plasticity equations is done by using the standard finite element
method, and reported in detail in Yefimov et al. (2004a) for another boundary value problem. The dislo-
cation dynamics part of the problem and the crystal plasticity part are decoupled by applying a staggered
solution procedure for time integration. The solution of either of the two separate problems is obtained by
using an explicit time-stepping scheme, with the same time steps for both subproblems.

Here, we pay attention only to the microscopic boundary conditions, required to solve the dislocation
dynamics subproblem for this particular boundary value problem. Along the lateral sides x1 = 0 and
x1 = w of the unit cell, periodic boundary conditions are applied, so that q(a)(w,x2) = q(a)(0,x2) and
k(a)(w,x2) = k(a)(0,x2) at all times. At the top and the bottom of the strip we model impenetrable walls
for the dislocations. Thus, at these boundaries we require the dislocation velocity component normal to
the boundary to vanish, i.e. v(a) Æ n = 0, where n is the unit normal to the top and bottom surfaces.

3.2. Numerical results for the reference case

The overall material response is presented in terms of average shear stress, rave
12 , given by
rave
12 ¼ 1

w

Z w

0

r12ðx1;HÞdx1; ð28Þ
and its work-conjugate, the applied shear C.
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The overall shear stress versus shear strain response using different nonlocal interaction laws is shown in
Fig. 2. The shear stress rave

12 is normalized by the mean strength of the dislocation sources, �snuc ¼ 50MPa.
Fig. 2 shows that the material response is very sensitive to the nonlocal interaction law. In the continuum
calculations the material exhibits a gradual transition to yield with nearly linear strain hardening at the
largest strain levels. In the discrete dislocation simulations, despite the pronounced serrations due to indi-
vidual dislocation events, a similar hardening tendency is observed. The hardening is related to the fact that
the slip is blocked at the top and the bottom surfaces of the strip. Thus, the dislocations on the inclined slip
planes pile-up against the surfaces and therefore produce a back stress on each activated slip system, which,
in turn, significantly affects the overall response. This effect is picked up by the nonlocal theory as well, but
depending upon the type of the applied nonlocal interactions, Eqs. (21), (23) or (24).

By comparing the nonlocal plasticity results with the discrete dislocation observation, it is seen that the
best match is achieved by applying the interaction rule denoted as �version 2�, Eq. (23). The other interac-
tion rules, including the uncoupled one, tend to overestimate the magnitude of the total back stress sðaÞtot ,
which, in turn, shifts the yield point upwards and gives rise to a higher hardening rate.

These observations confirm the conclusion in the discrete dislocation analysis by Shu et al. (2001) that
the effective back stress on a slip system is smaller than the back stress from that individual slip system. The
back stress that develops on one slip system is relaxed by the back stress produced by a dislocation structure
of the other slip system. In the nonlocal continuum model the interaction rule (23) implies a similar behav-
iour due to compensating interactions arising from the negative off-diagonal elements of the projection ma-
trix S(ab) in Eq. (23). The other tested interaction rules give the opposite effect with S(12) = S(21) being non-
negative. Thus, in the remainder of this paper we will use the nonlocal interaction rule from Eq. (23).

The continuum dislocation distributions at C = 0.015 for slip system 1 oriented at u(1) = 60� are shown
in Figs. 3a and b in terms of the q and k fields, respectively. The corresponding plots for the second slip
system (u(2) = 120�) are omitted here for brevity because they are similar. Qualitatively, Fig. 3 reveals
the same dislocation structures as found in the discrete dislocation analysis of Shu et al. (2001), sampled
in Fig. 4 at the same instant. Both approaches predict the formation of two distinct layers at the top
Γ

σ 12av
e /τ

nu
c

0 0.005 0.01 0.015 0.02
0
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Version 1
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Uncoupled (S(12)=S(21)=0)
Discrete dislocations

Fig. 2. Sensitivity of the average shear stress rave
12 versus applied shear strain C response to different slip systems interaction laws. Result

of discrete dislocation plasticity is also shown.



Fig. 3. Distributions of (a) the total dislocation density q and (b) the sign-dislocation density k at C = 0.015 for the slip system
u(1) = 60� inside the unit cell for H = 1lm.
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Fig. 4. Discrete dislocation distribution at C = 0.015 in the unit cell for H = 1lm. Positive dislocations are denoted by ‘‘+’’, negative
ones by ‘‘�’’, cf. Fig. 1.
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and bottom surfaces of the strip, densely populated by dislocations. The layers have been formed by the
motion of like-signed dislocations (see Fig. 1 for the sign convention) that move from the core of the strip
towards the surfaces. These so-called geometrically necessary dislocations (GNDs) pile-up against the top
and bottom surfaces because of the imposed no-slip condition in the direction normal to the surfaces. The
continuum plasticity calculations predict the thickness of each layer to be roughly 0.1–0.15lm, which is
consistent with the discrete dislocation observations (Shu et al., 2001).
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The formation of the boundary layers leads to a non-uniform spatial distribution of the shear strain
component across the strip thickness. This is conveniently measured by the shear c averaged over the x1
direction, i.e.
cðx2Þ ¼
2

w

Z w

0

e12ðx1; x2Þdx1: ð29Þ
Fig. 5 shows the predictions of the c distribution across the strip according to nonlocal continuum and dis-
crete dislocation plasticity for the reference case. The results of the two approaches are in good agreement
showing the systematic trend in boundary layer formation. The width of the boundary layers is increasing
with ongoing deformation until around C = 0.01, and remains nearly constant afterwards. The width of the
boundary layer in the strain profile at C = 0.015 is roughly the same as the thickness of the dislocation
boundary layer seen in Figs. 3 and 4 at the same instant.

3.3. Size effects

In order to test the ability of the continuum theory to pick up size effects (Shu et al., 2001), we perform
calculations for various strip heights H but otherwise identical parameters. Fig. 6 shows the effect of the
strip height on the overall stress–strain response according to discrete dislocation and nonlocal continuum
plasticity. The figure displays the systematic trend for the hardening rate as well as the flow strength to in-
crease with decreasing strip height H. Evidently, the discrete dislocation results contain statistical effects,
mostly on initial yield, through the distribution of source strengths; however, calculations for five different
realizations of source strengths yield a spread of only 20% in the yield point. In the continuum plasticity
calculations the size effect mainly appears in the initial flow strength, while the hardening rate dependence
upon strip height is slightly less pronounced than that predicted in the discrete dislocation simulations.
Nevertheless, beyond the elasticity–plasticity transition, the overall hardening for all sizes appears to be
approximately linear with strain according and the tangent modulus drave

12 =dC drops as the strip height
increases.
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Fig. 6. Effect of strip height H on stress–strain response according to (a) discrete dislocation and (b) nonlocal continuum plasticity.
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The size effect is triggered by the presence of the distinct boundary layers of GNDs through a delicate
interplay between boundary layer thickness, internal strain gradient and plastic strain in the bulk. Fig. 7
demonstrates the effect of size on the strain distribution for various strip heights, by plotting c(x2/H). If
this field were identical for the different values of H, the boundary layer, as measured by this quantity,
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would scale with the strip size; complete scaling with H would evidently imply size independence. The re-
sponse is size dependent but the strain profile is not a very sensitive exponent of it.
4. Bending of a single crystal

The second benchmark problem to confront the nonlocal theory against discrete dislocation results is
bending of a single crystal in double slip, as analyzed originally by Cleveringa et al. (1999). A strip of width
L and height h is subjected to a rotation h along its edges (see Fig. 8) through the boundary conditions
u1ðtÞ ¼ �hx2; r12 ¼ 0 on x1 ¼ �L=2; ð30Þ

with plane strain conditions normal to the x1–x2 plane. Traction-free boundary conditions are imposed
along the top and bottom sides of the strip:
r12 ¼ r22 ¼ 0 on x2 ¼ �h=2: ð31Þ

Slip by the motion of edge dislocations (b = 0.25nm) on two slip systems occurs inside the highlighted area
of the strip in Fig. 8; this region is designed so that the lateral sides, where displacements are prescribed
along x1 = ± L/2, always remain elastic.

Most of the results will be presented for a strip having dimensions L = 12lm and h = 4lm (the reference
case), subjected to a bending rate of _h ¼ 103 s�1. The strip has two slip systems, oriented at u(1) = 30� and
u(2) = 150� from the x1 axis. The plasticity parameters are the same, both elastically and plastically, as in
the previous section and as in Yefimov et al. (2004b) where the same problem was addressed but in single
slip.

No dislocations are presumed present initially, but Frank–Read sources are distributed in the material,
having a mean strength �snuc ¼ 1:9� 10�3 l and standard deviation Dsnuc ¼ 0:2�snuc. For the reference case
there are 202 sources that are evenly distributed and randomly positioned among 101 slip planes per slip
system. This leads to an average source density qnuc = 10lm�2 (inside the plastic zone) for each slip system.
In the continuum calculations the sources are distributed uniformly over all integration points in the matrix
with a uniform density qðaÞ

nuc ¼ 10 lm�2 for each of the two slip systems. The strength distribution of the
sources is calculated separately for the two slip systems. The nucleation time is taken to be equal to
tnuc = 10�8 s for all sources.

A uniform finite element mesh consisting of 66 · 38 quadrilateral elements is used to discretize the do-
main for both mechanical and dislocation dynamics subproblems. Numerical discretization of the model as
well as treatment of the microscopic boundary conditions for the dislocation dynamics subproblem have
been discussed in detail in Yefimov et al. (2004b).

The effect of strip size is studied by varying L and h such that the ratio h/L remains unchanged. The
overall response will be presented in terms of the bending moment, M, calculated from the stress state by
Fig. 8. Plastic bending of a two-dimensional strip with two symmetric slip systems.
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M ¼
Z h=2

�h=2
x2r11ð�L=2; x2Þdx2: ð32Þ
The moment M is normalized by a reference moment
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; ð33Þ
that would result from the linear stress distribution �snucx2=ðh=2Þ.
The bending moment response to the imposed rotation according to both plasticity descriptions is shown

in Fig. 9a for the reference case. The continuum plasticity result for the case with only one slip system at
u(1) = 30� is shown for comparison. The bending response for single slip is seen to be significantly harder
than for double slip. In the latter case, a very low hardening rate (on average) is observed. The prediction of
the continuum model for the total dislocation density evolution is also in good agreement with the discrete
dislocation simulations.

The discrete dislocation distribution at h = 0.015 is shown in Fig. 10. Only few of the 101 available slip
planes of each slip system have been activated. It is also seen that the two slip systems are, on average,
equally populated with dislocations and that they are arranged mainly in well-defined pile-ups with dislo-
cation-free areas near the top and bottom free surfaces. There are a few locations in the matrix, where some
of the pile-ups of one slip system are blocked by dislocations on the other slip system. Slip becomes locally
hindered there, the local stress from dislocations on one slip systems increases and can trigger dislocation
generation on other slip systems. The dislocations being nucleated due to such process are ‘‘statistical’’ ones
rather than the GNDs that are required to accommodate the applied deformation. This explains why the
total dislocation density for double slip is higher than that in single slip (cf. Yefimov et al., 2004b).

The continuum dislocation distributions in terms of the q and k fields at h = 0.015 are shown in Figs. 11
and 12 for slip systems 1 and 2, respectively. Qualitatively, these fields have a similar structure as found
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Fig. 11. Distributions of (a) the total dislocation density q(1) and (b) the sign-dislocation density k(1) at h = 0.015 on slip system 1 in the
reference case (30�, 150�).
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in the discrete dislocation analysis in Fig. 10. The levels of the total dislocation density, q(1), and the
net-Burgers vector density, k(1), show that in slip system 1 (u(1) = 30�) the positive dislocations dominate,
even though, for the reason described above, not all of them are GNDs. The second slip system
(u(2) = 150�) reveals qualitatively similar behaviour, but with negative dislocations dominating. We also
see that the continuum model predicts dislocation-free boundary layers near the free surfaces, much like
the discrete simulations. This effect has been explained in detail by Yefimov et al. (2004b).

The development of the statistical dislocation population in the matrix can be observed in Fig. 13, where
the evolution of the total dislocation density accumulated on the two slip systems is plotted versus plastic
curvature. The plastic curvature is computed at each deformation stage as (Cleveringa et al., 1999)
jp ¼ 2h
L

� M
EI

: ð34Þ



Fig. 12. Distributions of (a) the total dislocation density q(2) and (b) the sign-dislocation density k(2) at h = 0.015 on slip system 2 in the
reference case (30�, 150�).
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discrete and continuum plasticity.
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The first term in the right-hand side is the total curvature and the second is the elastic curvature, where
EI = lh3/6(1�m) is the bending stiffness in plane strain. According to Nye (1953) and Ashby (1970) the
GND density for bending reads
Fig. 14
disloca
qG ¼ jp

b1
; ð35Þ
where b1 ¼ b cosu. Fig. 13 shows that the total dislocation density initially increases linearly with the plas-
tic curvature jp with a slope slightly smaller than 1/b1, but from around jp = 0.001 the dislocation density
increases faster than linear. The latter is attributed to a growing contribution of the statistical dislocations
to the total dislocation density. Despite some quantitative deviation from the discrete dislocation result, the
continuum model with the chosen rule for nonlocal interactions is capable of picking up this effect quali-
tatively correctly.

To study the effect of slip system orientation with the nonlocal continuum model, we repeat the calcu-
lation for a strip having two slip systems at u(1) = 60� and u(2) = 120�. For this case we take the dislocation
source density qnuc = 17lm�2 (inside the plastic zone for each slip system), which corresponds to 670 dis-
location sources evenly distributed between the 335 slip planes per slip system in the discrete dislocation
simulations. Comparison of results from discrete and continuum calculations in Fig. 14 reveals that the
continuum model with the applied symmetric nonlocal interaction rule (23) is also able to predict the depen-
dence of bending response on slip system orientation, as seen originally in dislocation simulations. Fig. 15a
shows that the dislocation distribution for the (60�, 120�) orientation is more uniform than in the reference
case. The discrete dislocation simulations predict the formation of individual, regularly spaced slip bands,
while the continuum model (Fig. 15b) gives rise to a dislocation-free zone near the neutral line (y = 0) and
resolves a few individual slip bands near the elastic–plastic interface. As discussed for single slip by Yefimov
et al. (2004b), the dislocation-free core originates from a non-zero value of sres.

Next we consider the effect of specimen size on the bending response. Fig. 16a compares the bending
response for the reference 12lm · 4lm specimen with that of a two times larger specimen (24lm · 8lm)
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Fig. 15. Distribution of (a) dislocations according to discrete dislocation plasticity and (b) the accumulated total dislocation density
q(1) + q(2) of two slip systems 60� and 120� at h = 0.015.
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with two slip systems at u(1) = 30� and u(2) = 150�. The bigger specimen has the same source density as de-
fined in the reference case. In the continuum calculations the Gaussian distribution of source strength is the
same for both specimens, as generated in the reference case. For the discrete dislocation simulations the
random distributions of position and strength of the sources are generated independently for the two spec-
imens, so that this by itself gives some statistical difference in the response in addition to the size effect.



θ

M
/M

re
f

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

24 µm x 8 µm

12 µm x 4 µm

continuum
discrete

κp (µm-1)
ρ

(µ
m

-2
)

0 0.0005 0.001 0.0015 0.002
0

4

8

12

16

24 µm x 8 µm 12 µm x 4 µm

continuum

slope 1/b1

discrete

(a) (b)

Fig. 17. Effect of specimen size for slip systems at (60�, 120�) on (a) the moment versus rotation angle and (b) total dislocation density
evolution versus plastic curvature according to nonlocal continuum and discrete dislocation plasticity.

3392 S. Yefimov, E. Van der Giessen / International Journal of Solids and Structures 42 (2005) 3375–3394
The results of the two calculations show that, due to the presence of the GNDs in the specimen, the re-
sponse is size dependent and consistent with the conventional tendency of �smaller being stronger�. A similar
conclusion is obtained for slip systems at 60� and 120� as shown in Fig. 17. The two models predict also that
the total dislocation density grows faster with plastic deformation for the bigger specimen and deviates
from the linear asymptotic behaviour according to (35) (see Fig. 16b and Fig. 17b). However, in the bigger
strip the deviation from the linear slope of the total density versus plastic curvature curve occurs at smaller
plastic strains and is more prominent due to a larger population of statistical dislocations than for the ref-
erence size. In the continuum calculations, the dislocation density is generally somewhat lower with respect
to the results of the discrete simulations, but the effect is picked up qualitatively well.
5. Conclusion

We have addressed the problem of extending the recently formulated nonlocal crystal plasticity theory
for single slip (Yefimov et al., 2004a) to multiple slip in two dimensions. Continuum dislocation dynamics
in multiple slip has been proposed based on the dynamics derived for single slip, and coupled to the small-
strain framework of conventional continuum single crystal plasticity. Nonlocal interactions between the
dislocations on different slip systems have been taken into account and the key issue of the form of these
interactions has been addressed. Several possibilities to account for the orientation dependence of the non-
local interactions have been considered on phenomenological grounds.

To investigate the capabilities of the theory in multiple slip, it has been applied to two boundary value
problems. One problem is the simple shearing between two rigid and impenetrable walls of a single crystal
oriented for symmetric double slip. Comparison of the results for different nonlocal interactions rules with
discrete dislocation results of Shu et al. (2001) has singled-out the one that gives rise to negative off-diag-
onal elements of the projection matrix. The other interaction rules tend to overestimate the flow stress and
shift the yield point upwards. Based on this comparison, the interaction law expressed in (22) and (23) is the
best among those considered here. Numerous other phenomenological ones may be analyzed and a more
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accurate interaction may be found, but within the present approach it seems more suited to await the rig-
orous statistical analysis of multiple slip along the lines of Zaiser et al. (2001).

The nonlocal plasticity calculations predict the formation of two distinct layers at the top and bottom
surfaces of the strip, densely populated by the GNDs, much like the discrete simulations. The thickness
of the boundary layers and the shape of the non-uniform shear strain profiles across the strip thickness
are also in a good agreement with the results of the discrete dislocation plasticity simulations. The theory
is also shown to be able to predict the size effect triggered by the presence of the boundary layers of GNDs,
whose thickness does not scale with the strip height.

The other problem that has been addressed in this study concerns the bending of a single-crystal strip in
plane strain with double slip. The nonlocal plasticity calculations have shown that, consistent with the dis-
crete dislocation predictions of Cleveringa et al. (1999) for the same problem, the bending response for dou-
ble slip shows significantly less hardening than in single slip. The presence of a significant population of
statistically stored dislocations in the material, which originate, to large extent, from nonlocal interactions
between different slip systems, has been also predicted. The orientation dependence of the bending response
and the size effects for different slip orientations are consistent with the results of discrete dislocation sim-
ulation of the problem.

The present study for multiple slip, together with the previous ones (Yefimov et al., 2004a,b) for single
slip, have shown that the proposed nonlocal continuum theory is able to handle various boundary value
problems with different types of boundary conditions and to capture nonlocal effects. Contrary to phenom-
enological theories where strain gradients are added to the constitutive framework as internal variables
(e.g., Fleck et al., 1994; Fleck and Hutchinson, 1997; Gao et al., 1999; Gurtin, 2002), nonlocality in the
present theory arises from the dislocation dynamics. The length scale in this theory is not a constant, as
in all phenomenological theories to date, but is controlled by the dislocation density which generally evolves
with deformation. This series of the studies has also revealed that, once fitted to a particular boundary
value problem, the theory is able to produce physically relevant solutions of other boundary value problems
for the same material without any additional tuning. The variety of applications that the theory can handle
is limited, however, by the two-dimensional nature of the theory.
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